This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

The Chemical Properties of Alkali Metals Heptaphosphides

Vasily Miluykov^a; Alexandr Kataev^a; Oleg Sinyashin^a; Evamarie Hey-Hawkins^b
^a A. E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Kazan, Russia ^b Universität Leipzig, Institut für Anorganische Chemie, Leipzig, Germany

To cite this Article Miluykov, Vasily , Kataev, Alexandr , Sinyashin, Oleg and Hey-Hawkins, Evamarie(2008) 'The Chemical Properties of Alkali Metals Heptaphosphides', Phosphorus, Sulfur, and Silicon and the Related Elements, 183: 2, 509-512

To link to this Article: DOI: 10.1080/10426500701761623 URL: http://dx.doi.org/10.1080/10426500701761623

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 183:509-512, 2008

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500701761623

The Chemical Properties of Alkali Metals Heptaphosphides

Vasily Miluykov,¹ Alexandr Kataev,¹ Oleg Sinyashin,¹ and Evamarie Hey-Hawkins²

 ¹A. E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Kazan 420088, Russia
 ²Universität Leipzig, Institut für Anorganische Chemie, Leipzig, Germany

Trisodium heptaphosphide Na_3P_7 (1) reacts with alkyl tosylates with formation of sodium dialkylheptaphosphides (2) or trialkylheptaphosphines (3) depending on the stoichiometry. Sodium 1,2-diphosphacyclopentadienide is formed in the reaction of cyclopropenyl complexes of nickel with sodium polyphosphides.

Keywords Alkyl tosylate; sodium 1,2-diphosphacyclopentadienide; sodium pentaphosphacyclopentadienide; trisodium heptaphosphide

INTRODUCTION

Homopolyatomic anionic clusters of phosphorus (polyphosphide anions) have stimulated the interest of scientists as possible intermediates in the transformation of elemental phosphorus into organophosphorus compounds, ^{1,2} and some alkali metal polyphosphides have been used as semiconductor systems.³

The numerous cagelike polyphosphide anions include P_7^{3-} , which has a nortricyclane structure⁴ and is the only polyphosphide anion which exhibits valence tautomerism—a Cope rearrangement—in solution.⁵ This is responsible for the greater stability of P_7^{3-} in comparison with other polyphosphides. Furthermore, the P_7 unit is a building block of numerous polyphosphides.^{6,7,8}

The focus of our research is the investigation of the chemical properties of the P_7^{3-} anion in reactions with organic and organometallic

Address correspondence to Vasily Miluykov, A. E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Arbuzov Str. 8, Kazan 420088, Russia. E-mail: miluykov@iopc.knc.ru

compounds, and comparison of the chemical properties of two different types of polyphosphides: aromatic (NaP_5) and cagelike $[Na_3P_7\ (1)]$.

The chemical properties of the P_7^{3-} anion are not well studied, and only two methods for preparation of organic derivatives thereof are known. First, the reaction of the P_7^{3-} anion with an excess of tetraalky-lammonium salts leads to the formation of disubstituted heptaphosphides NaP_7R_2 (2). Second, the reaction of 1 with various alkyl halides yields a mixture of di- and trisubstituted symmetrical and asymmetrical isomers of organylheptaphosphines. Therefore, it was of interest to elaborate a method for the selective synthesis of di- and trisubstituted heptaphosphines as potential polydentate ligands. One possibility is the well-known reaction between alkali metal phosphides and alkyl or aryl tosylates, the products.

We found that the reaction of **1** with two equivalents of alkyl tosylates results in the formation of the asymmetric isomer of sodium dialkylheptaphosphides (**2**) (Scheme 1).

SCHEME 1

However, when **1** was treated with three equivalents of alkyl tosylate a mixture of symmetric and asymmetric isomers of trialkylheptaphosphines (**3**) was formed.¹²

Thus, the reactivity of the cagelike sodium polyphosphides toward alkyl halides or alkyl tosylates is clearly different from that of the aromatic P_5^- anion in NaP_5 : NaP_5 reacts with alkyl halides to form a mixture of different alkylpolyphosphines with destruction of the P_5 ring. However, the reaction of Na_3P_7 (1) with alkyl halides or alkyl tosylates leads to the formation of dialkylheptaphosphides (2) or trialkylheptaphosphines (3) with a nortricyclane phosphorus cage.

The chemical behavior of alkali metal polyphosphides toward transition metal complexes is another example of the differences between aromatic and cagelike polyphosphides. Thus, NaP_5 reacts with numerous transition metal compounds to give sandwich complexes with an intact P_5 ring^{13,14,15} or a tetraphosphabutadienide fragment. On the other hand, Na_3P_7 reacts with transition metal complexes to form complexes either with an intact P_7 nortricyclane-like structure or with

transformation of the nortricy clane structure into a norbornadiene-like structure. $^{18,19}\,$

We have found that both NaP_5^{20} and $Na_3P_7^{21}$ react with nickel cyclopropenyl complexes **5** to give sodium 3,4,5-triphenyl-1,2-diphosphacyclopentadienide (**6**) independent of the kind of nickel cyclopropenyl complex employed (i.e., bimetallic (**7**) or sandwich (**8**) complexes) (Scheme 2).

Therefore, we assume that the first stage of the formation of sodium 1,2-diphosphacyclopentadienide (**6**) in the reaction of sodium polyphosphides with cyclopropenyl complexes of nickel is nucleophilic attack of the polyphosphide anion on a carbon atom of the aromatic cyclopropenyl ring, which has a positive charge according to Hückel's rules.

SCHEME 2

In summary, we have observed that, depending on the stoichiometry of the starting materials, the reaction between the heptaphosphide trianion and alkyl tosylates leads either to the asymmetric dialkylheptaphosphides (2) or to a mixture of symmetric and asymmetric isomers of trialkylheptaphosphines (3). Both types of polyphosphides, i.e., aromatic NaP_5 and cagelike Na_3P_7 , react with cyclopropenyl complexes of nickel with formation of sodium 3,4,5-triphenyl-1,2-diphosphacyclopentadienide (6).

REFERENCES

- [1] M. Ehses, A. Romerosa, and M. Peruzzini, Top. Curr. Chem., 220, 107 (2002).
- [2] V. Miluykov, Y. Budnikova, and O. Sinyashin, Russ. Chem. Rev., 74, 781 (2005).

- [3] R. Schachter, C. G. Michel, M. A. Kuck, J. A. Baumann, D. J. Olego, L. G. Polgar, P. M. Raccah, and W. E. Spicer, Appl. Phys. Lett., 45, 277 (1984).
- [4] W. Hönle and H. G. von Schnering, Z. Anorg. Allg. Chem., 440, 171 (1978).
- [5] M. Baudler, H. Ternberger, W. Faber, and J. Hahn, Z. Naturforsch. B, 34, 1690 (1979).
- [6] N. Korber, Phosphorus, Sulfur, Silicon, 124/125, 339 (1997).
- [7] H.-G. von Schering, V. Manriquez, and W. Hönle, Angew. Chem., 93, 606 (1981);Angew. Chem. Int. Ed. Engl., 20, 594 (1981).
- [8] G. Fritz, H.-W. Scheider, W. Hönle, and H.-G. von Schering, Z. Naturforsch. B, 43, 561 (1988).
- [9] S. Charles, J. C. Fettinger, and B. W. Eichhorn, J. Am. Chem. Soc., 117, 5303 (1995).
- [10] M. Baudler and K. Glinka, Chem. Rev., 93, 1623 (1993).
- [11] A. M. R. Gonsalves, J. C. Bayon, M. E. S. Serra, and J. P. R. Pereira, J. Organomet. Chem., 553, 199 (1998).
- [12] V. Miluykov, A. Kataev, O. Sinyashin, and E. Hey-Hawkins, Russ. Chem. Bull. in press, 2007.
- [13] M. Baudler, S. Akpapoglou, D. Ouzounis, F. Wasgestian, B. Meinigke, H. Budzikiewicz, and H. Münster, Angew. Chem., 100, 288 (1988); Angew. Chem. Int. Ed. Engl., 27, 280 (1988).
- [14] M. Baudler and T. Etzbach, Angew. Chem. 103, 590 (1991); Angew. Chem. Int. Ed. Engl. 30, 580 (1991).
- [15] V. Miluykov, O. Sinyashin, O. Scherer, and E. Hey-Hawkins, Mendeleev Commun., 1 (2002).
- [16] V. Miluykov, O. Sinyashin, P. Lonnecke, and E. Hey-Hawkins, Mendeleev Commun., 212 (2003).
- [17] R. Ahlrich, D. Fenske, K. Fromm, H. Krautscheid, U. Krautscheid, and O. Treutler, Chem. Eur. J., 2, 238 (1996).
- [18] S. Charles, B. W. Eichhorn, A. I. Rheingold, and S. G. Bott, J. Am. Chem. Soc., 116, 8077 (1994).
- [19] S. Charles, J. C. Fettinger, S. G. Bott, and B. W. Eichhorn, J. Am. Chem. Soc., 118, 4713 (1996).
- [20] V. Miluykov, O. Sinyashin, A. Kataev, P. Lönnecke, and E. Hey-Hawkins, Organometallics, 24, 2233 (2005).
- [21] V. Miluykov, O. Sinyashin, A. Kataev, P. Lönnecke, and E. Hey-Hawkins, Russ. Chem. Bull., 56, 304 (2007).